初一数学??上册内容
下个月我们就将迎来这学期第一次大考“期中考试”,月考和期中考的时间离的很近,复习的时间也很少,所以同学们要抓紧了。不想落后他人,知识点抓紧预习复习起来。今天,王老师和大家分享的是初一数学上册【期中复习】之有理数,相关题型 考查形式 易错点!
有理数相关题型:排序,给几个不同形式的有理数和无理数,进行比较大小然后排序考查形式:选择题易错点:正确区分有理数和无理数,小数不一定是无理数,2/3这样的数是有理数。知识点1:有理数的有关概念有理数:整数和分数统称为有理数。注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。但是本讲中的分数不包括分母是1的分数。
(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数。(3)“0”即不是正数,也不是负数,但“0”是整数。整数包括正整数、零、负整数。例如:1、2、3、0、-1、-2、-3等等。分数包括正分数和负分数,例如:1/2、0.6、-1/2、-0.6等等。知识点2:有理数的分类(1)按整数、分数的关系分类:
(2)按正数、负数与0的关系分类:
注:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a≥0表明a是非负数;a≤0表明a是非正数。知识点3:数轴数轴是理解有理数概念与运算的重要工具,数与表示数的图形(如数轴)相结合的思想是学习数学的重要思想。正如华罗庚教授诗云:数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数是难入微。数形结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!数与形的第一次联姻——数轴,使数与直线上的点之间建立了对应关系,揭示了数与形的内在联系,并由此成为数形结合的基础。1.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。数轴的定义包含三层含义:(1)数轴是一条直线,可以向两端无限延伸;(2)数轴有三要素——原点、正方向、单位长度,三者缺一不可;(3)原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的(通常取向右为正方向)。2.数轴的画法:(1)画一条直线(一般画成水平的直线)。(2)在直线上选取一点为原点,并用这点表示零(在原点下面标上“0”)。(3)确定正方向(一般规定向右为正),用箭头表示出来。(4)选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3……;从原点向左,每隔一个单位长度取一点,依次表示为-1,-2,-3……
注:(1)原点的位置、单位长度的大小可根据实际情况适当选取;(2)确定单位长度时,根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点,从原点向右,依次表示为2,4,6,……;从原点向左,依次表示为-2,-4,-6,……;3.数轴上的点与有理数的关系:所有的有理数都可以用数轴上的点表示。正有理数可以用原点右边的点表示,负有理数可以用原点左边的点表示,零用原点表示。4.利用数轴比较有理数的大小:在数轴上表示的两个数,右边的数总比左边的数大。正数都大于0;负数都小于0;正数大于一切负数。知识点4:相反数1.相反数的定义:(1)相反数的几何定义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数,叫做互为相反数。如,4与-4互为相反数。(2)相反数的代数定义:只有符号不同的两个数(除了符号不同以外完全相同),我们说其中一个是另一个的相反数。2.相反数的性质:任何一个数都有相反数,而且只有一个。正数的相反数是负数,负数的相反数是正数,0的相反数是0。0是唯一一个相反数等于本身的数。反之,如果a=-a,那么a一定是0。3.相反数的特征:若a与b互为相反数,则a b=0(或a=-b)若a b=0(或a=-b),则a与b互为相反数。4.求一个数的相反数的方法:(见书)5.多重符号的化简:(1)在一个数的前面添上一个“+”号,仍然与原数相同,如+5=5,+(-5)=-5。(2)在一个数的前面添上一个“-”号,就成为原数的相反数。如-(-3)就是-3的相反数,因此,-(-3)=3。知识点5:绝对值的概念1.绝对值的几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作“丨a丨”2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
知识点6:有理数大小的比较正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小。利用数轴,在数轴右边的数永远大于左边的数。